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Abstract 
Inkjet printing is a nascent technology that is developing from 

only printing text and graphics into a major topic of scientific 
research and R&D, where it can be used as a highly reproducible 
non-contact patterning technique to print at high speeds either 
small or large areas with high quality features. Inkjet printing is 
an additive technique, which requires only small amounts of 
functional materials, which can vary from a simple polymer 
solution to advanced nanoparticle dispersions. The latter form of 
ink has been investigated more and more during the last few years, 
in order to produce conductive features that require a reduced 
amount of processing steps. 

In recent years inkjet printing has been used for the 
production of microelectronic structures on (flexible) substrates 
and for the rapid production of 2D and 3D microstructures. In 
order to create these microstructures we present ‘reactive inkjet 
printing’ as a technology to create micron-scale polyurethane 
structures, such as dots, lines and pyramids. These structures were 
fabricated in-situ and cured within five minutes by inkjet printing 
successively two separate inks respectively from two separate print 
heads, with one ink containing isophorone diisocyanate, and the 
other consisting of an oligomer of poly(propylene glycol), a 
catalyst, and a cross-linking agent. The fast polymerisation 
reaction that forms polyurethane at the surface opens a new route 
for rapid prototyping, as well as the use of inkjet as a technique for 
handling moisture-sensitive reactions. 
 

Introduction 
The origin of inkjet printing goes back to the eighteenth 

century when Abbé Nollet published his experiments on the effect 
of static electricity on a stream of droplets in 1749.[1] Almost a 
century later, in 1833, Felix Savart discovered the basics for the 
technique used in modern inkjet printers: an acoustic energy can 
break up a laminar flow-jet into a train of 
droplets.[2] It was, however, only in 1858 
that the first practical inkjet device was 
invented by William Thomson, later 
known as Lord Kelvin.[3] This machine 
was called the Siphon recorder and was 
used for automatic recordings of telegraph 
messages.[4] 

 

The Belgian physicist Joseph Plateau and the English 
physicist Lord Rayleigh studied the break-up of liquid streams and 
are, therefore, seen as the founders of modern inkjet printing 
technology. The break-up of a liquid jet takes place because the 
surface energy of a liquid sphere is smaller than that of a cylinder, 
while having the same volume – see Figure 1.[5] 

When applying an acoustic energy, the frequency of the 
mechanical vibrations is approximately equal to the spontaneous 
drop-formation rate. Subsequently, the drop-formation process is 
synchronised by the forced mechanical vibration and therefore 
produces ink drops of uniform mass. Lord Rayleigh described the 
instability and varicosity of jets,[6] where he calculated a 
characteristic wavelength λ for a fluid stream and jet orifice 
diameter d given by: λ = 4.443 d 

It took another 50 years before the first design of a continuous 
inkjet printer, based on Rayleigh’s findings, was filed as a patent 
by Rune Elmqvist.[7] He developed the first inkjet 
electrocardiogram printer that was marketed under the name 
Mingograf by Elema-Schönander in Sweden and Oscillomink by 
Siemens in Germany.[8] 

At the beginning of the 1970s the piezoelectric inkjet drop-
on-demand (DoD) system was developed.[9] At the Philips 
laboratories in Hamburg printers operating on the DoD principle 
were the subject of investigation for several years.[10,11] In 1981 
the P2131 printhead was developed for the Philips P2000T 
microcomputer, which had a Z80 microprocessor running at 2.5 
MHz. Later the inkjet activities of Philips in Hamburg were 
continued under the spin-off company Microdrop 
Technologies.[12] The first piezoelectric DoD printer on the 
market was the serial character printer Siemens PT80 in 1977. 

Four different modes for droplet generation by means of a 
piezoelectric device were developed in the 1970s, which are 
summarised in Figure 2, and further explained below.[13] 
 

Figure 1. Break-up of a laminar flow-jet into a train of droplets, because of Rayleigh-Plateau instability. 
Reprinted from ref. [5]. 
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Firstly, the squeeze method, invented by Steven Zoltan,[14] 
uses a hollow tube of piezoelectric material, that squeezes the ink 
chamber upon an applied voltage (Figure 2a). The squeeze method 
is nowadays also used in Microdrop printing devices.[12] 
Secondly, the bend-mode (Figure 2b) uses the bending of a wall of 
the ink chamber as method for droplet ejection and was discovered 
simultaneously by Stemme[15] of the Chalmers University in 
Sweden and Kyser et al. of the Silonics company in the USA.[16] 
This technique is used for example in Tektronix and Epson 
printers. The third mode is the pushing method by Howkins 
(Figure 2c),[17] where a piezoelectric element pushes against an 
ink chamber wall to expel droplets, and is nowadays used in 
Trident, Brother and Epson printers. Finally, Fishbeck et al. 
proposed the shear-mode (Figure 2d),[18] where the electric field 
is designed to be perpendicular to the polarization of the piezo-
ceramics. Typical pioneers in shear mode printheads are Xaar and 
Spectra.[13] 

Although inkjet printing offers a simple and direct method of 
electronic controlled writing with many advantages, including high 
speed production, silent, non-impact and fully electronic operation, 
inkjet printers failed to be commercially successful in their 
beginning: print quality as well as reliability and costs were hard to 
combine in a single printing technique. Thermal inkjet changed the 
image of inkjet printing dramatically. Not only could thermal 
transducers be manufactured in much smaller sizes, since they 
require a simple resistor instead of a piezoelectric element, but also 
at lower costs. Therefore, thermal inkjet printers dominate the 
colour printing market nowadays.[19] 

In scientific research piezoelectric DoD inkjet systems are 
mainly used because of their ability to dispense a wide variety of 
solvents, whereas thermal DoD printers are more compatible with 
aqueous solutions.[20] Furthermore, the rapid and localised 
heating of the ink within thermal inkjets induces thermal stress on 
the ink. 

Although inkjet printers are 
widely used for graphical 
applications, it was only within the 
last decades that inkjet printing has 
grown to a mature patterning 
technique. As a consequence, it 
has gained specific attention in 
scientific research because of its 

high precision and its additive 
nature: only the necessary amount 

of functional material is dispensed.[21] Furthermore, the absence 
of physical contact between print head and substrate allows many 
potential applications, such as inkjet printing of labels onto rough 
curved surfaces, or surfaces that are sensitive to pressure. Inkjet 
printing is utilised to dose many different kinds of materials, such 
as conductive polymers and nanoparticles,[22-24] sol-gel 
materials,[25] cells,[26] structural polymers,[27] ceramics[28,29] 
and even molten metals.[30] 

The impact of a droplet has a significant influence on the final 
printed feature, but also of great concern is a frequently observed 
in-homogeneous drying effect of liquid droplets on a non-
absorbing substrate, the so-called “coffee drop” effect;[31,32] 
solute present in the solution deposits near the boundary of inkjet 
printed droplets – this behaviour is similar to when drops of coffee 
are spilt on the table. When using the technique of inkjet printing, 
for example for the application of OLEDs, this effect should be 
minimized for correct device functionality.[33] However, much 
research has been conducted to prevent the coffee ring effect, for 
example by applying an increased substrate temperature, in order 
to stimulate solvent evaporation, which subsequently minimises 
line or film bleeding,[34,35] and by combining a high and low 
boiling solvent, which reduces the high evaporation rate at a liquid 
feature’s edge.[36] 

Inkjet printers have also been used in several studies in order 
to produce a series of equal-sized droplets, which allowed the 
reduction of errors in the measurements and significantly increased 
the experimental reproducibility.[37,38] 

The resolution of inkjet printed structures is comparable to the 
nozzle diameter, and is typically between 30 and 100 µm. While 
decreasing the nozzle diameter improves resolution, it also creates 
a smaller window of inks that can be used for printing, with respect 
to their viscosity and surface tension.[39] 

Finally, the printability of an ink can be formulated by 
Fromm’s Z-number, which is the inverse of the Ohnesorge number 

Figure 2.  Different piezoelectric drop-on-demand technologies. Reprinted from ref. [13]. 
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Figure 3. Schematic representation of the reaction scheme for the formation of polyurethanes from the reactants. 
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(Oh): Z = η-1(ρDσ)1/2 = Oh-1, where ρ, σ and η are the inks density, 
surface tension and viscosity, respectively. D is a characteristic 
length, which in the case of inkjet printing is the nozzle diameter. 
Fromm predicted that drop formation in DoD systems was possible 
only when the Z-number is greater than 2.[40] 
 

Results and discussion 
Many different techniques exist in rapid prototyping for 

fabrication of solid structures. One of the main drawbacks of rapid 
prototyping technologies is that only a selected range of materials 
can be processed directly. Some materials, like bio-ceramics, 
biodegradable polymers, and silicones are accessible only by post-
treatment processes like pre-molding of the samples. 

In order to achieve the multi-micron feature resolution 
typically associated with rapid prototyping techniques, inkjet 
printing was considered as a synthesis tool. This technique is also 
called reactive inkjet printing, and is a precise method for building 
up small structures using certain reactive materials, like 
polyurethanes.  

Towards this aim, the synthesis of polyurethane-based 
materials was seen as a particularly illustrative example. The 
chemistry of this involves the preparation of two separate inks, one 
containing a diol, and the second containing a diisocyanate. The 
two inks are printed as successive layers on a surface, and are 
allowed to react to form urethane bonds. Two separate inks were 
subsequently inkjet printed onto each other on the substrate, 
illustrated by the schematic representation in Figure 3. 

After printing, the reactants cured and hardened more quickly 
with the addition of the cross-linking agent trimethylolpropane and 
a catalyst. To monitor the progress of the reaction in situ the 
polymerisation kinetics in crosslinked urethane films was by FTIR 
spectroscopy.[41] As the isocyanate and diol functional groups are 
consumed, the result is an attenuation of the isocyanate peak with a 
maximum around 2260 cm-1. By using an unchanging reference 
peak (e.g. the alkane peak at 2960 cm-1), the degree of conversion 

can be calculated as a function of the change in the intensity of the 
isocyanate peak relative to the alkane peak at a particular time 
point, compared to the initial isocyanate/alkane peak height ratio, 
as depicted in Figure 4. 

Furthermore, the substrate holder was heated to 90 °C, which 
resulted in conversions between 60 and 70% for a catalyst 
concentration between 0.1 and 2.0 wt%. Due to this relatively high 
conversion, solid polyurethane structures were obtained after three 
minutes. The resulting structures were measured using optical 
profilometry, as shown in Figure 5. 
 

 
Figure 5. Five inkjet printed lines of in-situ formed polyurethane. From top to 
bottom, the parallel lines consist of an increased number of layers, where 
each layer consists of two print runs from both reactants. From top to bottom 
the number of layer decreases from 5 to 1, respectively. 
 

Conclusions 
We have demonstrated that defined micron-scale 

polyurethane-based structures can be fabricated via reactive inkjet 
printing starting from the corresponding monomers in a reactive, 
in-situ manner on glass substrates. This approach yields unique, 
cross-linked thermoset PU materials with spatial resolution in the 
range of tens of microns. 
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